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Abstract

This paper presents a new approach based on the Hopfield model of artificial neural networks to solve the routing problem in a

context of computer network design. The computer networks considered are packet switching networks, modeled as non-oriented
graphs where nodes represent servers, hosts or switches, while bi-directional and symmetric arcs represent full duplex
communication links. The proposed method is based on a network representation enabling to match each network configuration

with a Hopfield neural network in order to find the best path between any node pair by minimizing an energy function. The results
show that the time delay derived from flow assignment carried out by this approach is, in most cases, better than those determined
using conventional routing heuristics. Therefore, this neural-network approach is suitable to be integrated into an overall

topological design process of moderate-speed and high-speed networks subject to quality of service constraints as well as to changes
in configuration and link costs. # 2001 Published by Elsevier Science Ltd.
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1. Introduction

A computer network is a communication infrastruc-
ture which consists of nodes representing workstations,
servers, hosts, or switches, as well as arcs representing
communication links. In a packet switching network,
each message is broken into small blocks called packets,
which travel independently through the network from
the source node to the destination node. The nodes
through which the packet is transmitted from the source
to the destination constitute a path or a route, and the
mechanism used to select one route among various
alternatives to link each source–destination pair is called
a routing procedure.

There exist in the literature many routing procedures
(Kershenbaum, 1993). They essentially aim at minimizing
the main delay of the packets in a network, that is, the

average time taken by a typical packet to travel from one
source to a given destination in the network. Among
them, exact mathematical programming methods (Dutta
and Mitra, 1993; Gavish, 1992; Neumann, 1992), based
on certain properties of the mean delay function to solve
the problem of optimal routing, are revealed themselves
unpractical, particularly because of their incapacity to
take into account possible node or link failures.
Furthermore, their implementation requires complex
and lengthy calculations. As a result, for practical
purposes, routing heuristics are recommended in order
to efficiently select the transmission paths of the packets
without causing network congestion (Baransel et al.,
1995; Beaubrun and Pierre, 1997; Kamimura and
Nishino, 1991; Pierre and Beaubrun, 2000; Khasnabish,
1993), and neural networks have been considered as a
general framework to solve such kind of optimization
problem (Binh and Chong, 1995; Lee and Chang, 1993;
Mehmet and Kamoun, 1993; Rauch andWinarske, 1988).

The brain’s capacity for learning, as well as its
resistance to local disruptions, essentially result from
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the collective functioning and simultaneous operation of
the neurons of which it is composed. The human brain is
made up of an enormous number of nerve cells called
neurons, which are organized into a strongly connected
network. Each neuron receives signals coming from
several thousands of other like cells via branches called
dendrites. The signal passes from one neuron to another
by crossing a single fiber, called the axon, branching
from its extremity. The point of contact between two
neurons is called a synapse, which may be stimulating or
inhibiting in nature. Each synapse is characterized by
the efficiency with which it ensures the connection. The
neuron bases its decisions on the global information it
receives. A formal or artificial neuron is a model of a
biological neuron possessing those properties (Drosen,
1994; Kagiantis and Papantoni-Kazakos, 1997; Rumel-
hart et al., 1984).

This paper proposes a heuristic approach based on
Hopfield artificial neural networks to solve the routing
problem in a design context. It is organized as follows.
Section 2 presents the Hopfield neural network. Section
3 exposes the proposed adaptation of the Hopfield
model to solve the routing problem. Section 4 specifies
the implementation details and presents some simula-
tion results.

2. The Hopfield neural network

A formal neuron is a binary element whose state is
either +1 (active) or ÿ1 (inactive). The neuron
calculates the sum of its inputs, which are the outputs
of the formal neurons to which it is connected. It
contains n inputs adjusted by a weight and transfer
function, which may be continuous or discontinuous.
The value of each input is modulated by the correspond-
ing synaptic efficiency weight, and the neuron takes
a decision by comparing this sum with its own intrinsic
threshold. Its state is equal to ÿ1 if the sum is less
than the threshold, and +1 if otherwise. All neurons
take their decisions simultaneously, while taking
into account the evolution of the global state of the
network.

Two rules of learning are often used: the Widrow–
Hoff’s rule and the perceptron rule (Drosen, 1994;
Rumelhart et al., 1984). According to the Widrow–
Hoff’s rule, corrections are made to the synaptic
coefficients of all the neurons proportionally to the
difference between the response obtained and the
response desired (gradient algorithm). In the case of
the perceptron rule, the correction is made by acting on
the synaptic coefficients of the neurons giving an
incorrect response. These two rules allow the network
to carry out a supervised learning (Kagiantis and
Papantoni-Kazakos, 1997).

Formal neural networks are only capable of solving
simple problems of classification. For more complex
problems, a solution consists of organizing the decision-
making process into several stages, which correspond to
utilizing a network of several layers. A generalization
of the Widrow–Hoff’s rule has given rise to the method
of Retro-propagation of the gradient. It consists of
imposing a configuration on the input neurons, ob-
serving the response of the network provided by the
output neurons, and then recalculating the synaptic
efficiencies so as to minimize the difference between the
real and the desired responses by using a gradient
method. The calculation is made layer-by-layer, from
the output toward the input, hence the name retro-
propagation.

A Hopfield network consists of n completely con-
nected neurons (Hopfield, 1982, 1984; Hopfield and
Tank, 1986). Each neuron has two possible states:
Vi ¼ ÿ1 and Vi ¼ 1. As shown in Fig. 1, the connection
of neuron i to neuron j is denoted by Tij and the
total entry of a neuron i is equal to

P
j TijVj. The state

of the system is characterized by the n Vi, and may
then be represented by a word of n bits. The network
has a dynamic functioning usually sequenced by a
clock: ViðtÞ or Vi denotes the state of the neuron at
instant t, and Viðtþ 1Þ the state of the neuron at instant
tþdt, dt denoting the interval between two ticks of the
clock.

The Hopfield model is relatively different from the
aforementioned layer models. Firstly, the learning is
static since there is no true dynamism in the connections.
Secondly, the relaxation of the network is dynamic since
the network is capable of making a certain number of
iterations before reverting to a stable state.

Another aspect of Hopfield networks is their tendency
to minimize an energy function which depends on the
weight of the connections between the different neurons.
This aspect raises the possibility of using the Hopfield
neural networks in different types of applications, which
require certain decisions to be taken in order to
minimize a number of values in relation to other
variables.

If the states of the network are Vi2 ½ÿ1;þ1�, then
the energy of a Hopfield and Tank (1986) network is

Fig. 1. Example of a Hopfield neural network.
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defined as:

E ¼ ÿ 1
2S;

where

S ¼V1ðw12V2 þ w13V3 þ w14V4 þ . . .Þ

þ V2ðw21V1 þ w23V3 þ w24V4 þ . . .Þ

þ v3ðw31V1 þ w32V2 þ w34V4 þ . . . Þþ . . .

or

S ¼V1ðweight of the connections originating
from neuron 1Þ
þV2ðweight of the connections provided originating

from neuron 2Þþ . . .

More explicitly, E may be rewritten as follows :

E ¼ ÿ1
2

X
i; j

wi; jvivj:

Hopfield and Tank (1986) have proposed a circuit
which can be viewed as a model of biological neural
network; each neuron is represented as an operational
non-linear amplifier with a sigmoid transfer function
gi. This monotone and increasing function relays
the output Vi of neuron i to the entry Ui. The output
Vi is designed to take any value between 0 and 1. A
typical sigmoid function is (Mehmet and Kamoun,
1993)

Vi ¼ giðUiÞ ¼
1

1þ eÿliUi
; ð1Þ

where li is the increase of the amplifier. Each
neuron receives an input from the outside, and its
connections from other neurons; the weights of these
connections may be described by a connection matrix
defining the neural network. The dynamics of Hopfield
networks may be described as follows (Mehmet and
Kamoun, 1993)

dUi

dt
¼
Xn
j¼1

TijVj ÿ
Ui

t
þ Ii; ð2Þ

where t denotes a circuit’s time constant. For a
symmetric connection matrix, and for a sufficiently high
gain of the amplifiers (li!1), the dynamics of the
neurons follow a decreasing gradient descent of the
quadratic energy function E (Hopfield, 1984):

E ¼ ÿ 1

2

Xn
i¼1

Xn
j¼1

TijViVj ÿ
Xn
i¼1

IiVj: ð3Þ

As long as the state of the neural network evolves inside a
hypercube of dimension n defined by Vi2 f0; 1g, the
minimum of the energy function E will not attain one
of the 2n vertices of this hypercube, unless li tends
towards 1. In terms of energy function, the dynamics of

the ith neuron can be described by (Mehmet and Kamoun
(1993)

dUi

dt
¼ ÿUi

t
ÿ @E

@Vi
: ð4Þ

This relation constitutes the foundation of the proposed
routing approach.

3. Routing by Hopfield neural networks

Routing in a packet switching network consists of
determining the best path or route between each node
pair (source/destination) through the network in order
to minimize the network delay. Computer networks
considered in this paper are modeled as non-oriented
graphs defined by G ¼ ðN;AÞ, where N denotes the set
of nodes and A the set of bi-directional and full-duplex
links. The neural-network model proposed to solve the
routing problem consists of nðnÿ 1Þ neurons, that is, a
matrix n� n where all the neurons on the diagonal are
eliminated. The coordinates of the neurons are ðx; iÞ,
where x denotes the rows, and i the columns. The
neuron at ðx; iÞ is characterized by its output Vxi and
defined as follows:

Vxi ¼
1 if the arc ðx; iÞ is part of the route;
0 if not

�
and the variable rxi is defined as follows:

rxi ¼
0 if the arc ðx; iÞ exists;
1 if not:

�
The cost of the arc ðx; iÞ is denoted by Cxi which is a real
positive variable. A null cost is assigned to each
nonexistent arc. For the purpose of numeric manipula-
tion associated with calculations of the derivatives
and without loss of generality, the energy function
proposed by Mehmet and Kamoun (1993) has been
adopted

E ¼ m1
2

Xn
x¼1

Xn
i¼1
i 6¼x

ðx;iÞ6¼ðd;sÞ

Cxi Vxi þ
m2
2

Xn
x¼1

Xn
i¼1
i 6¼x

ðx;iÞ6¼ðd;sÞ

�xi Vxi

þ m3
2

Xn
x¼1

Xn
i¼1
i 6¼x

Vxi ÿ
Xn
i¼1
i 6¼x

VixVix

8<:
9=;

2

þ m4
2

Xn
i¼1

X
x¼1
x 6¼i

Vxi ð1ÿ VxiÞ þ
m5
2
ð1ÿ VdsÞ:

ð5Þ

As the neurons are organized into a two-dimensional
table, (1), (2) and (4) can be rewritten, respectively, as
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follows:

Vxi ¼ gxiðUxiÞ ¼
1

1þ eÿlxiUxi
ð6Þ

dUxi

dt
¼
Xn
y¼1

Xn
j¼1
j 6¼y

Txi;yj Vyj ÿ
Uxi

t
þ Ixi ð7Þ

dUxi

dt
¼ ÿUxi

t
ÿ @E

@Vxi
: ð8Þ

By substituting (5) in (8) and calculating the derivative
@E=@Vxi, it follows:

dUxi

dt
¼ÿ Uxi

t
ÿ m1

2
Cxið1ÿ dxddisÞ ÿ

m2
2
rxið1ÿ dxddisÞ

ÿ m3
Xn
y¼1
y 6¼x

ðVxy ÿ VyxÞ

ÿ m3
Xn
y¼1
y 6¼i

ðViy ÿ VyiÞ

ÿ m4
2
ð1ÿ 2VxiÞ þ

m5
2
dxddis; ð9Þ

where d is the Kronecker symbol, which is defined as

dab ¼
1 if a ¼ b;
0 if not:

�
In comparing the coefficients of (7) with those of (9), the
Txi;yj of the connection matrix take the following values:

Txi;yj ¼ m4dxydij ÿ m3dxy ÿ m3dij þ m3djx þ m3diy ð10Þ

Ixi ¼ÿ
m1
2
Cxið1ÿ dxddisÞ ÿ

m2
2
rxið1ÿ dxddisÞ

ÿ m4
2
þ m5

2
dxddis

ð11Þ

¼

m5
2
ÿ m4

2
if ðx; iÞ ¼ ðd; sÞ;

ÿ m1
2
Cxi ÿ

m2
2
rxi ÿ

m4
2

if not;

8><>: 8ðx 6¼ iÞ; ðy 6¼ jÞ:

The initial data of the neurons Uxi are equal to zero,
and the evolution of the state of the neural network is
simulated by the solution of a system of nðnÿ 1Þ
differential equations where the variables are the neuron
outputs Vxi. To solve this system, the numerical method
of Runge–Kutta of the fourth order has been used. The
solution consists of observing the outputs of the neurons
Vxi for a specific duration dt. The circuit’s time constant
t for each neuron is initialized to 1 and, without loss of
generality, it has been considered that lxi ¼ l and
gxi ¼ g. Good results are obtained for dt ranged from
10ÿ5 to 10ÿ3. To avoid bias in favour of any particular
path, it must be assumed that all inputs Uxi are equal

to 0. However, to help the network converge rapidly,
while preventing it from adopting an undesirable
state (for example, convergence of two different paths),
small perturbations must be made to the initial inputs
of the Uxi network. At the start and based on our
simulation results, we have chosen Uxi such that
ÿ0:0002 � Uxi � þ0:0002. The calculations will cease
when the network reaches a stable state, that is, when
the difference between the outputs is less than
10ÿ5(Vxi � 0:00001) from one update to another. When
the network is in a stable state, the final values of Vxi are
rounded off, that is, they are set to 0 if Vxi50:5, and to 1
otherwise.

The parameters mi of the neural network serve as
regulators and precision factors to avoid blocking in a
local minimum. Hopfield and Tank (1986) have used a
formulation which combines mixed legality constraints.
This solution, although simple, is far from efficient as
much time is lost avoiding illegal states.

Mehmet and Kamoun (1993) have considered the
problem in the form of an inequation system as follows:

2m3 ÿ m4 > 0;
m5 � m1ðCxiÞmax;
m2 ¼ m5;
m1 � 2m3=ðCxiÞmax:

Based on the fact the energy function is quadratic and
the second derivative @2E=@V2

xi > 0, the following
values have been found : m1 ¼ 950; m2 ¼ 2500;
m3 ¼ 1500; m4 ¼ 475; m5 ¼ 2500.

This paper assumes that the mi are of the form
mi¼ const:Vit, where const is an integer constant and Vit
an integer variable, which takes values from 1 to 5. This
variable serves as a speed and precision factor. Beyond
the value of 5, the network begins to diverge and to give
poor results. The mean number of updates needed to
find results equals 100, compared to 6000 in the work of
Mehmet and Kamoun (1993).

The first step of the proposed routing algorithm
consists of obtaining the network data, that is, the
number n of nodes, the matrix r of the links and the
traffic matrix. The second step initializes the matrix of
the Vxi: the Vxi receive random values between ÿ0.0002
and +0.0002. The third step triggers the process of
minimization in the neural network to solve the
differential equations and to stabilize the network.
Finally, the values of the matrix of outputs are rounded
leading to the searched routing matrix. From this
routing matrix, flow is assigned to each link of the
network configuration by distributing the traffic between
each node pair on the best route connecting these nodes
: the flow of a link is the effective number of information
unit (bit) carried by this link per unit of time (second).
Then, a capacity value can be assigned to each link by
using capacity options available on the marketplace,
while ensuring that the link flow does not exceed the link
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capacity: the capacity of a link refers to the maximum
number of information unit which can be transmitted on
this link per second; as the link flow, it is usually
expressed in bits per second (bps) (Jan et al., 1993).

Time delay is a function of the link flows and
capacities. For moderate-speed networks subject to
some realistic assumptions discussed in Gerla and
Kleinrock (1977), the mean time delay T can be
calculated as follows:

T ¼ 1

g

Xm
i¼1

fi
Ci ÿ fi

; ð12Þ

where Ci denotes the capacity of the link i, fi the flow of
the link i in bits/second (bps), g the total traffic in the
network (in packets/s), and m the number of links in the
network. For high-speed networks, the delay may be
obtained from (12) by adding the propagation delay t
(Kleinrock, 1992):

T ¼ 1

g

Xm
i¼1

fi
Ci ÿ fi

þ t: ð13Þ

In (13), t is equal to L=c, L denotes the length of the
link, and c the speed of light. If L is expressed in
kilometers, then: t ¼ 10ÿ5

3 L:

4. Implementation details and results

For the purpose of evaluating the efficiency of the
proposed routing method, it has been applied to
networks of various sizes. For all the experiments, the
average packet size is 1000 bits. The implementation has
been realized in Turbo-Pascal version 7.0 in a DOS
environment, on an IBM PC compatible, Pentium
133MHz.

4.1. Routing and flow assignment

A network configuration is represented by a char-
acteristic matrix M ¼ ½Mij�, Mij 2 f0; 1g, i¼ 1; 2; . . . ; n,
j¼ 1; 2; . . . ; n, and 8ði; jÞ i 6¼ j. In such a matrix,Mij ¼ 1
means the link ði; jÞ exists, Mij ¼ 0 means the link ði; jÞ
does not exist. The neural network is represented by a
matrix V ¼ ½Vij�, i¼ 1; 2; . . . ; n, j¼ 1; 2; . . . ; n, and 8ði; jÞ

i 6¼ j. In this matrix, each element represents a neuron,
and the value Vij represents the output of the neuron
ði; jÞ after its update. The link costs form a matrix
having the same dimensions as the matrix of neurons,
where each entry represents the length of a link. The
traffic matrix denoted by G ¼ ½gij�, with i, j¼ 1; 2; . . . ; n,
and i 6¼ j, may be uniform (the same number of packets
circulates between each node pair), or random (the
number of packets between each node pair is expressed
as an integer ranging from 1 to 200). The link capacities
(shown in Tables 1 and 2) are selected from options
available on the marketplace. Once the network config-
uration and the associated data are obtained, the routes
between node pairs are determined, the flow and
capacity are assigned to each link, and the mean delay
of the network is finally computed.

For illustrative purposes, the network configuration
shown in Fig. 2 has been considered. The application of
the neural-network-based routing to this network led to
the shortest path between each node pair, as reported in
the routing matrix of Table 3. In this table, to each
source–destination node pair corresponds a sequence of
nodes defining the shortest path found from our routing
algorithm. For instance, the shortest path linking the
source node s to the destination node b (2nd line of the

Table 1

Options of low and moderate capacities

C (kbps) 9.6 19.2 50.0 100.0 230.40 460.80 921.6 1843.2

Table 2

Options of high capacities

Signal DS-1 DS-1C DS-2 2 DS-2 12 DS-1 4 DS-2 DS-3 2 DS-3 4 DS-3 DS-4

C (Mbps) 1.544 3.152 6.312 12.624 18.528 25.248 44.736 89.472 178.94 274.18

Fig. 2. Best path and its output neuron matrix.
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table) corresponds to the sequence sÿ aÿ cÿ d ÿ b.
For a uniform traffic of 10 packets/s and a uniform
traffic of 150 packets/s respectively, the resulting link
flows and capacities are reported in Table 4. The mean
delay T associated with this network configuration is
42ms for a uniform traffic of 10 packets/sec, and 16ms
for a traffic of 150 packets/s.

On the other hand, by applying the neural-network-
based routing to the network configuration of 15 nodes
shown in Fig. 3, and for a uniform traffic of 10 packets/s,
the mean delay T obtained is 58.2ms. With a uniform
traffic pattern of 150 packets/s between all the node pairs
of the network, the mean delay becomes equal to 4.5ms.
The link flows and capacities are reported in Table 5.

4.2. Effect of parameters variations on routing behavior

In this section, the effect of two parameters (the traffic
and the size of the network) on the behavior of the
proposed routing method is considered. For this

purpose, comparisons have been undertaken with other
routing methods such as the ‘‘shortest distance’’ and the
‘‘minimum number of hops’’, both methods which are
based on the concept of shortest route.

4.2.1. Effect of a variation in the traffic level
Consider the network configuration of 10 nodes

shown in Fig. 4. The node coordinates are given in
Table 6. In order to evaluate the sensitivity of the neural
network method relative to the traffic level, the traffic
has been varied from 10 to 50 packets/s, always in a
uniform fashion. Fig. 5 shows the variations of the mean
delay as a function of the traffic level. The mean delays
obtained by the neural network method are in general
more stable than those resulting from the other two
methods.

Table 3

Routing matrix associated with the network in Fig. 2

Node pair Sequence of nodes of the shortest path found

s–a s–a

s–b s–a–c–d–b

s–c s–a–c

s–d s–a–c–d

s–e s–e

a–b a–c–d–b

a–c a–c

a–d a–c–d

a–e a–s–e

b–c b–d–c

b–d b–d

b–e b–e

c–d c–d

c–e c–d–b–e

d–e d–e

Table 4

Link flows and capacities of the network in Fig. 2

Link For a traffic of 10 packets/s For a traffic of 150 packets/s

Flow Capacity Flow Capacity

(kbps) (kbps) (Mbps) (Mbps)

s–a 100 230.4 1.50 1.544

s–b 10 19.2 0.30 1.544

s–e 40 50 0.60 1.544

a–b 10 19.2 0.45 1.544

a–c 120 230.4 1.80 3.512

b–d 100 230.4 1.50 1.544

b–e 50 50 0.60 1.544

c–d 140 230.4 2.10 3.512

c–e 10 19.2 0.60 1.544

d–e 40 50 0.30 3.512

Fig. 3. A network of 15 nodes.

Table 5

Link flows and capacities of the network in Fig. 3

Link Low traffic High traffic

Flow Capacity Flow Capacity

(kbps) (kbps) (Mbps) (Mbps)

1–2 500 921.6 6.15 6.312

1–3 460 460.8 5.85 6.312

2–4 100 230.4 0.75 1.544

2–5 480 921.6 6.00 6.312

3–8 420 460.8 5.40 6.312

4–5 200 230.4 3.30 3.352

4–7 220 230.4 4.20 6.312

4–8 80 100.0 2.40 3.352

5–6 560 927.6 7.20 12.624

6–10 160 230.4 3.30 3.352

6–12 320 460.8 4.50 6.312

7–9 240 460.8 2.40 3.152

7–10 100 230.4 3.00 3.152

8–9 460 921.6 5.40 6.312

9–14 500 921.6 6.60 12.624

10–11 200 230.4 3.00 3.152

10–13 100 230.4 1.80 3.152

11–14 300 460.8 2.40 3.152

11–15 140 230.4 2.40 3.152

12–13 280 460.8 3.90 6.312

13–15 180 230.4 4.20 6.312

14–15 160 230.4 4.80 6.312
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The algorithm of the ‘‘shortest distance’’ essentially
corresponds to the Dijkstra’s algorithm. The ‘‘minimum
number of hops’’ method is an adaptation of the
conventional shortest path algorithms, where a unitary
length is assigned to each link of the network. Without
loss of generality, the paths connecting the node pairs 2
– 10 are selected for this comparative study.

For a uniform traffic of 10 packets/s, an average delay
of 59.9ms is obtained for the shortest distance routing.
By this technique, a packet traveling from node 2 to
node 10 uses the route 2–1–5–6–10; the related delay is
193.3ms. The path followed from node 2 to node 10,

based on the ‘‘minimum number of hops’’, is always the
same (2–4–8–9–10), path which has a length of 4 hops.

4.2.2. Effect of a variation in the network size
Consider the networks of 6, 7, 8, 9, 10, 11, and 12

nodes, respectively, which have been generated ran-
domly. Their configuration is presented in Figs. 6–12.
For these networks, the traffic is maintained uniformly
at 10 packets/s and the results are summarized in
Table 7. Fig. 13 shows the variation of the mean delay
as a function of the network size expressed in number of
nodes and links. According to this figure, there does not
exists a meaningful correlation between the mean delay
and the size of the network.

4.3. Comparison with optimal routing algorithms

For a network of 9 nodes with a uniform traffic
of 2 packets/s, the network configuration is shown in

Fig. 4. A second network of 10 nodes.

Table 6

Node coordinates for the network in Fig. 4

Nodes 1 2 3 4 5 6 7 8 9 10

Abscissa 20 20 40 40 30 55 60 70 85 85

Ordinate 60 85 100 70 35 25 60 85 60 30

Fig. 5. Variations in the mean delay as a function of the traffic level.

Fig. 6. Network of 6 nodes and 10 links.

Fig. 7. Network of 7 nodes and 11 links.

Fig. 8. Network of 8 nodes and 12 links.
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Fig. 14. The node coordinates are indicated in Table 8,
and the new capacity options are the following: 9.6,
19.2, 28.8, 38.4, 48.0, 57.6, 67.2, 76.8 kbps. The results
are reported in Table 9. In spite of the gap that separates
the neural network method from those provided by
optimal algorithms such as Flow Deviation (FD)
(Courtois and Semal, 1980; Fratta and Gerla, 1974),
and Bersekas-Gallager (BG) (Bertsekas and Gallager,
1987; Kershenbaum, 1993), this difference is compen-
sated by smaller execution times consumed by the
proposed neural-network approach. Obviously, the

Fig. 11. Network of 11 nodes and 16 links.

Fig. 9. Network of 9 nodes and 15 links.

Fig. 10. Network of 10 nodes and 14 links.

Fig. 12. Network of 12 nodes and 22 links.

Table 7

Comparative results of delay obtained as a function of the network size

Network Number of nodes Mean delay (ms)

1 6 46.2

2 7 47.6

3 8 36.8

4 9 34.1

5 10 29.6

6 11 65.9

7 12 72.3

Fig. 13. Variation of delay as a function of the network size.

Fig. 14. Network of 9 nodes.

S. Pierre et al. / Engineering Applications of Artificial Intelligence 14 (2001) 51–6058



large number of iterations required by these optimal
algorithms before obtaining a solution, as reported in
Kershenbaum (1993), causes this contrast in execution
times.

5. Conclusion

In this paper, a routing algorithm based on the
Hopfield model of artificial neural networks is pre-
sented. Routing in a packet switching network consists
of determining the best path between each node pair
through the network in order to minimize the network
delay. The neural-network approach proposed is based
on the utilization of an energy function which simulates
the objective function used in network optimization.

Computer networks considered in this paper are
modeled as non-oriented graphs composed only of
full-duplex communication links. The proposed neural-
network routing is based on a network representation
enabling the designer to match each network configura-
tion with a Hopfield neural network in order to find the
best path between any node pair by minimizing the
energy function. Some specific parameters must be used
to serve as regulators and precision factors, as well as to
avoid blocking in a local minimum.

To fix the values of these parameters, Hopfield and
Tank (1986) have opted for a formulation which
combines mixed legality constraints. Such a choice is
simple, but far from efficient since much time is lost
avoiding illegal states. Formulating the same problem as
an inequation system, Mehmet and Kamoun (1993)
found for these parameters some values which poten-
tially led to a great number of iterations before
converging.

For experimentation and simulation purposes, only
uniform traffic patterns have been considered. (This may
be justified by the fact that most of publications use

these patterns in order to compare each new routing
algorithm with other existing routing algorithms.) The
sensitivity of the neural network method relative to the
level of traffic has been evaluated. The mean delays
obtained by the neural-network approach are generally
more stable and less than those determined using
conventional routing methods such as the ‘‘shortest
path’’ and the ‘‘minimum number of hops’’. Compared
with optimal algorithms such as the ‘‘Flow deviation’’
method (Courtois and Semal, 1980; Fratta and Gerla,
1974), and the algorithm of Bertsekas and Gallager
(1987) and Kershenbaum (1993), the proposed neural-
network method gives delay results slightly less favor-
able, but in execution times considerably smaller. As a
result, the proposed neural-network approach is suitable
to be integrated into overall topological design pro-
cesses, for moderate and high-speed networks subject to
quality of service constraints as well as to changes in
configuration and link costs.
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