International JI. of Educational Telecommunications (2001) 7(2), 157-194

Towards a Telecommunication Platform for Supporting
Distributed Virtual Laboratories

SAMUEL PIERRE AND MARTHE KASSOUF
Mobile Computing and Networking Research Laboratory
Department of Electrical and Computer Engineering
Ecole Polytechnique de Montréal
C.P. 6079, Succ. Centre-Ville
Montréal, Québec, Canada, H3C 347
samuel.pierre@polymtl.ca

This article presents a telecommunication platform dedicated
to supporting distributed virtual laboratories. The architec-
ture of this platform is made of three layers. The first layer
deals with interoperability among heterogeneous networks
and allows users to access virtual laboratory environments.
The second layer provides a set of tools and generic func-
tionalities sharable among several specific laboratories. The
third layer insures the adaptation of these basic tools to other
specific tools that exist in the peculiar context of each labo-
ratory. The result is a distributed environment in which di-
verse elements interoperate to provide not only for pedagogi-
cal contents but also access mechanisms to simulations and
virtual experimentation from different specific laboratories.
The experimentation results put the network congestion level
and the quality of service required by the user on top of the
criteria determining the global efficiency of this platform.

The more computer networks evolve, the more the variety of machines
related to them and the links they use increase. In fact, each type of net-
work has its own specific logical setting, mode of switching, data format,
and level of quality of service. This explains, in part, the existence of heter-
ogeneous environments for public and private networks of boundless

158 Pierre and Kassouf

dimensions giving rise to many problems of incompatibility and interopera-
bility (Prnjat and Sacks, 1999).

This article proposes a telecommunication platform model that insures
interoperability among heterogeneous networks and serves as an access in-
frastructure to distributed virtual laboratories. Conceptually, this platform is
a three-layered structure where a layer of basic tools and functionalities
(BTF) is framed with an adaptation layer that adapts them to specific tools
and functionalities (STF).

The main idea consists of modeling a generic laboratory node whose
additional extensions will enable development of other specific laboratories
for diverse scientific and engineering disciplines. To start, two laboratory
prototypes, one in physics and another in electrical engineering were devel-
oped. Then, other specific prototypes for chemistry, biology, computer en-
gineering, and mechanical engineering were added. The envisioned generic
model integrates a more complete set of external possible attributes com-
mon to diverse specific laboratories. These external attributes constitute the
basis for some basic tools and functions shared by all specific laboratories.
Each laboratory is given specific characteristics and functions referred to as
specific tools and functions.

The design approach adopted was both object-oriented and inductive. It
was object-oriented because specific laboratories inherited a number of
characteristics from a generic laboratory that became a common ancestor. It
is inductive, because the enrichment of the generic model resulted in incre-
mental adding of diverse groups of internal attributes generated from the fu-
ture development of a sufficient number of specific laboratories. The fol-
lowing is the list of acronyms used in this article:

ABR: Available Bit Rate

ADSL: Asymmetric Digital Subscriber Line

API: Application Programming Interface

ATM: Asynchronous Transfer Mode

BSD: Berkeley Standard Distribution

BTF: Basic Tools and Functionalities

CBR: Constant Bit Rate

CGI: Common Gateway Interface

CORBA: Common Object Request Broker Architecture

DCE: Distributed Computing Environment

ESIOP: Environment-Specific Inter-ORB Protocol

FTP: File Transfer Protocol

GDC: General DataComm

GIOP: General Inter-ORB Protocol

Towards a Telecommunication Platform 159

GPIB: General Purpose Interface Bus
HTML: HyperText Markup Language
HTTP: HyperText Transfer Protocol
ICMP: Internet Control Message Protocol
IDL: Interface Definition Language

IEEE: Institute of Electrical and Electronics Engineers
IIOP: Internet Inter-ORB Protocol

IP: Internet Protocol

IPX: Internet Packet Exchange

ISDN: Integrated Service Digital Network
JDK: Java Development Kit

JRE: Java Runtime Environment

JVM: Java Virtual Machine

Kbps: Kilobits per second

MB: Mega Bytes

Mbps: Megabits per second

NI-DAQ: National Instrument-Data Acquisition
OMG: Object Management Group

ORB: Object Request Broker

PSTN: Public Service Telephone Network
RDA: Remote Data Acquisition

RMI: Remote Method Invocation

RPC: Remote Procedure Call

SPX: Sequenced Packet Exchange

STF: Specific Tools and Functionalities
TCP: Transmission Control Protocol
URL: Universal Resource Locator

VDU: Visual Display Unit

VI: Virtual Instrument

VISA: Virtual Instrument Software Architecture
XML: eXtensible Markup Language

The section on “Interoperability of Heterogeneous Networks” summa-
rizes current mechanisms used to insure interoperability among heteroge-
neous networks. The section on “Design of the Telecommunication Plat-
form” presents the methodology adopted for designing the telecommunica-
tion platform proposed in this article. The section on “Implementing the
Telecommunication Platform™ discusses the implementation process, while
the last section describes experimentation and analyzes results.

160 Pierre and Kassouf

INTEROPERABILITY OF HETEROGENEOUS NETWORKS

To guarantee communications and information exchange between het-
erogeneous distributed networks, one has to have appropriate interoperabili-
ty mechanisms. The following are among the most known interoperability
mechanisms: Sockets, the HTTP/CGI set, Serviets, RMI and CORBA (Bard-
out, Hauw, Pavon, & Thomas, 1998; Barton, Eykholt, Faulkner, Kleiman,
Shivalingiah, Smith, Stein, Voll, Weeks, & Williams, 1992; Berners-Lee,
Fielding, & Frystyk, 1996; Haggerty & Seetharaman, 1998; Henning, 1998).

Sockets

Sockets are communication points with names and addresses. They
work as network access interfaces. Introduced in 1981 by way of UNIX
BSD 4.2 version (Barton et al., 1992), they became exclusively part of the
TCP/IP family of protocols. The TCP/IP family operates according to the
following modes: connection oriented (TCP), connectionless (UDP), and
natives (IP or ICMP). Later, special sockets extensions were added for other
platforms and communication infrastructures such as IPX/SPX and ATM.
This heterogeneity of contexts is also reflected in the variety of languages
used for the programming of these communication points.

Even though an object oriented modeling of sockets facilitates the inte-
gration of client entities to servers in a distributed object environment, this
type of modeling still has the following drawbacks:

e lack of transactions: there is no guarantee to insure the atomicity of op-
erations involving distributed objects;:

e impossibility of distributed entities dynamic discovery, that is, an un-
availability of means of updating and reaching connected and discon-
nected objects during a statically triggered session between two given
entities; and

e non-existence of interface description, meaning that data taken from
these links have no common representation, which means an increasing-
ly low probability of successful remote operations involving computers
of different types.

Thus, it becomes necessary to look for a higher level of programming with
which this kind of deficiency can be masked.

Towards a Telecommunication Platform 161

HTTPI/CGI

The HTTP/CGI brings to the Web, the possibility of invoking dynamic
distributed operations using static HTML documents. Introduced in 1990,
the HTTP protocol is in fact a call tool for remote procedures, a bit similar
to the RCP on the top of TCP/IP (Berners-Lee et al., 1996; Bostica, Calle-
gati, Cason, & Raffaelli, 1999). A typical client/server interaction through
HTTP/CGI is represented in Figure 1.

Server

2

Client > HTTe M col || o
‘5\\ Server |4 DProgram 3

1. Client request

2. CGI program launch

3. Operations on internal and external data structures
4. Processing outcome back to server

5. Output HTML document back to client

Figure 1. HTTP/CGI client/server interaction

In spite of its simplicity, the HTTP/CGI causes an enormous overload
because successive requests from a single client are separately processed.
The HTTP protocol is supplied with a web browser, which enables it to ne-
gotiate and manipulate data formats during a connection. The CGI protocol
allows a Web server to launch any program with eventually input/output
parameters. While, an object-oriented CGI code allows conveying distribut-
ed objects, such an option causes heavy overload because the HTTP mecha-
nism is based on a highly interactive request/response scheme. The HTTP/
CGI protocol contains two major flaws:

e Slow processing: could be considerable sometimes. It is caused by the
multi-phase connection setup between a client and a server object;

e Complicated interactions: a sequence of requests/responses requires sev-
eral connections between a client and a server.

162 Pierre and Kassouf

Several negative aspects calling for the design of other solutions plague the
HTTP/CGI protocol.

Servlets

In 1997, Javasoft introduced the first Java Web server supplied with a
new type of tools called serviet. The server dynamically loads a serviet,
which in turn supplies specific classes and modules capable on the one hand
of modeling the CGI protocol, and on the other of coexisting with the
HTTP protocol. In this case, the scenario is a bit more complex than previ-
ous cases, as shown in Figure 2.

Compared with the HTTP/CGI family of protocols, the serviets ap-
proach brings two improvements: a longer life cycle for a servlet and a pos-
sibility of a permanent connection to a database. This reduces the overload
caused by successive requests, but increases the service duration.

. Server
Client

9
Java
Code
1
o Reauest
Connection 5

6

A

HTTP server

Servlet

Output
o data

. Generation of a URL object for the connection
. Generation of a connection handler

.HTTP request

. Servlet loading

. Operations processing

. Generation of the response object

. Generation of the output data object

. Outcome back to HTTP server

. Output HTML document back to client

D 00 N O\ WA W N

Figure 2. Client/server interaction using servlets

Towards a Telecommunication Platform 163

RMI

An API or RMI programming interface is nothing other than the inte-
gration of a model for distributed objects that can be manipulated locally or
from a distance using Java virtual machines. Prior to any client/server inter-
action, with RMI, the following preliminary steps must be followed (Har-
key & Orfali, 1998):

o the implementation of the server object;
the generation of the real code for the object server (skeleton) and its
delegated code or a client downloadable stub;
the registration of the distributed object for public access; and
the invocation of the distributed object.

To mitigate the system destabilization caused by downloading or sub-
sequent exchanges, RMI requires the activation of a security manager on
the machine as well as on the server. Typically, a client/server interaction
under RMI takes the form described in Figure 3.

Client Server

Java
(J' éwclél Code
Jode
System ®
_____ 3. obiect
1
4 : 5

Repeated if 6 6
necessar

. Setup of the server’s security manager
.Server’s object binding

. Setup of the client’s security manager
.Remote objectdetection

. Stub’s loading

. Operation invocation via the stub

~ S\ N B 0 b —

. Operation’s outcome reception via the stub

Figure 3. Client/server interaction using RMI

164 Pierre and Kassouf

It clearly appears that the RMI approach differs from the others and
brings the following advantages:

e quicker processing than with HTTP/CGI,

e an interface description for managing both client and server functions
with a high level of abstraction;

e dynamic downloading secured by a code and Java classes; and

e adistributed object control including garbage collection mechanisms.

Moreover, RMI does not allow a propagation of transactions nor a dy-
namic discovery of distributed objects. RMI’s major drawback remains its
exclusively Java-based design, which eliminates the interoperability among
objects generated with different computer languages. The possibility for the
scalability of large distributed systems is thus being reduced.

In spite of these drawbacks, the RMI could be considered as a first step
towards a more sophisticated concept for interactions in an open distributed
objects environment. Javasoft and OMG have joined efforts to develop a
more universal interoperability mechanism known as CORBA.

CORBA

CORBA is a family of specifications established by OMG (Seethara-
man, 1998; Siegel, 1998; Vinoski, 1998). Two main aspects characterize
CORBA’s operational mode. On the one hand, every object must be provid-
ed with an IDL interface hiding the details of its real implementation, such
as the operations performed by this interface, the input and output parame-
ters of these operations, as well as the exceptions generated in the course of
false executions. On the other hand, for both local and remote objects, static
and dynamic requests are uniformly generated by routines and libraries
forming ORB’s layer at both ends of a connection (Schmidt, 1998). The
IDL/ORB association keeps a high level of encapsulation, because there is
no constraint on the programming languages used. Java, C, C++, Cobol,
Smalltalk, and Ada already havee equivalent extensions in IDL. Figure 4 il-
lustrates the typical interactions between clients and object servers.

Towards a Telecommunication Platform 165

Client Object i | Client | | Object |i Client Object E
IDL oL | | | IDL | | IDL | ! IDL DL |
Network
< >
(a) Local object (b) Remote object

Figure 4. Client/server interaction using CORBA

One of CORBA’s main features remains the fact that IDL object inter-
faces are independently accessible of regardless of used platforms and
ORBs. Such mechanisms are made possible by a GIOP generic standard,
which covers all interoperability aspects related to the physical data link
and network layers. Designed to operate on the top of a transport protocol
connection when it is used with TCP/IP, the GIOP standard leads to the
IIOP protocol. However, nothing impedes the coexistence between GIOP
and dependable protocols including asynchronous protocols such as IPX,
ATM, and the SS7 family of protocols. In other contexts, protocols similar
to GIOP, such as DCE/ESIOP (Harkey & Orfali, 1998), are defined.

CORBA applications are numerous and spread in multiple fields such
as banking, commerce, education, health, and so forth. One of CORBA’s
classical applications is network management based on oriented object
modeling of information management (Bardout et al., 1998; Haggerty &
Seetharaman, 1998). Increasingly larger networks require more specialized
distributed mechanisms. Hence, the use of CORBA becomes a necessity,
since products such as GDC ProSphere management architecture for ATM
networks are now available in the marketplace.

166 Pierre and Kassouf

Java-CORBA Compatibility

Java is a simple object oriented language that is portable and dynamic.
It has many elements common to both C and C++ languages. Java is, how-
ever, more sophisticated than these languages when one considers the secu-
rity resources dedicated to execute its code. Java has the advantages of an
interpreted language and guarantees the performance of a compiled lan-
guage (Anuff, 1996). In effect, the compilation of a Java program provides
for an intermediary code, known as Java Bytecodes, which could be inter-
preted on any platform. An interpreter is in fact a representation of what is
known as Java Virtual Machine (JVM), whose implementation could be re-
alized at the hardware level. Java development tools and web browsers are
nothing but interpreters used for local applications and Java Applets, re-
spectively.

With CORBA (Bardout et al., 1998; Haggerty & Seetharaman, 1998;
Henning, 1998), Java is no longer an ordinary competitor to the HTML lan-
guage for developing dynamic web pages. CORBA extends Java object
models and increases their distributive aspects. Thus, while maintaining a
light interface, Java Applets could use distributed components and trigger
either dynamic operations or atomic transactions invoking several entities.
Moreover, CORBA succeeded in introducing peer-to-peer communications
among servers. As a result, we have on the one hand a Java programming
style offering more services and, on the other, environments subject to
higher scalability.

In conclusion, the CORBA/Java combination is more suitable for real-
izing certain critical aspects of telecommunication platforms. Like other
distributed applications, virtual laboratories can benefit not only from effi-
cient support for integrating specific and generic tools, but also interactive
interfaces for flexible access. The design presented in the next section inte-
grates these characteristics.

DESIGN OF THE TELECOMMUNICATION PLATFORM

This section presents the telecommunication platform model dedicated
to support distributed virtual laboratories. First, the laboratory environment
architecture is outlined, then, its functional and technical specifications are
presented.

Towards a Telecommunication Platform 167

Architecture of the Laboratories’ Environment

Generally, telelearning refers to the use of computer networks for
learning (Ausserhofer, 1999; Collis, 1999; Collis, 1996). Telelearning al-
lows for the supervision of students by trainers, tutors, and professors, all
scattered in space and time. Thus, the support of learning activities in differ-
ent scientific and technical disciplines requires distributed learning environ-
ments similar, as much as possible, to those in conventional laboratories.

The proposed inductive methodology consists of defining and develop-
ing different laboratories according to characteristics that are specific to the
corresponding knowledge fields or disciplines. Then, the tools and functions
on which diverse laboratories are based are regrouped into two large sets:
BTF common to several types of laboratory, and STF that are rather pecu-
liar to one type of laboratory. The generic feature of the virtual laboratory
model results from the development of a sufficient number of specific labo-
ratories integrating a variety of functionalities and tools. However, this ge-
neric aspect is mainly built on a telecommunication platform, that is, the
physical support of BTF, as shown in Figure 5 (Kassouf Pierre, Levert, &
Conen, 1999)

| Generic Laboratory

//

Specific Laborato 1
Specific Laborator

| T Specific Laboratory I~

\\

Telecommunication platform

194 PSTN
ATM
Net k 7))
Network etwor Network
=

Figure 5. Proposed architecture for the virtual laboratories

168 Pierre and Kassouf

Beyond the access to a variety of experimental manipulations, a tele-
communication platform also guarantees interoperability among different
access networks. Regardless of networks or telecommunication media, us-
ers could access a set of equipment supplied by each specific virtual labora-
tory. Depending on a user request, the platform sends back adequate specif-
ic tools with a copy of each commonly used tool. Thus, the user would be
free to use functionalities without having to distinguish the generic from the
specific.

The implementation of the proposed architecture is now being carried
out through two laboratory prototypes: one for physics and the other for
electrical engineering. The realization of other specific virtual laboratory
prototypes is currently under way, in conformity with the proposed induc-
tive approach.

Physics’ laboratory. It supplies a multimedia environment including sever-
al simulations with sequences of video-recorded experiments, as well as an-
imated and textual explanations. The implementation takes into account
most significant aspects of a real laboratory beside practical experiment
constraints such as measurement inaccuracy and lack of specification of
fixed parameters. Each simulation could include its specific tools and other
common tools borrowed from a generic basic model: notebooks, analysis,
mathematical, and measurement instruments.

A physics virtual laboratory integrates access functionalities and dis-
plays multimedia, and remote manipulation of documents, as well as com-
munication resources such as electronic mail and voice mail. Other more
sophisticated functionalities could be added in the future. Online assistance
during an experiment, shared tools, real-time control, and data exchanges
could be enumerated as examples.

Electrical Engineering Laboratory. An electrical engineering laboratory
has the same pedagogical assistance notions as those of a physics laboratory
as well as similar types of interactions and manipulations. Moreover, it em-
phasizes basic electrical engineering concepts to which it adds a tele-experi-
mentation functionality. Essentially, the objective is to carry out simulations
of numerical models typically dedicated to the acquisition and processing of
electrical signals. This kind of virtual environment offers the opportunity to
use an equivalent of expensive laboratory equipment, whose real usage may
sometimes put its manipulators at risk.

Beyond the distributed environment for applications which guarantees
data sharing among participants, the electrical engineering laboratory also

Towards a Telecommunication Platform 169

supplies other types of tools including a videoconference. These tools sup-
ply among other things, new management and learning means for remote
control and measurement that enable remote real-time operations. In this
perspective, this virtual laboratory invokes modeling and simulation envi-
ronments for the use of shared or non-shared hardware and software that
one finds in traditional electrical engineering laboratories.

Telecommunication platform. In addition to providing access to virtual
laboratories, the telecommunication platform manages to supply each spe-
cific laboratory with a package of sharable BTFation whose adaptation to
any particular context remains completely transparent to the users. This
model offers an example of conceptual and normative framework forte ex-
changes among heterogeneous systems. It is also underpinned by the need
for interoperability among several types of networks and communication
media, particularly characterized not only from an architectural perspective,
but also in terms of software and hardware tools. Therefore, it is the role of
the telecommunication platform to mitigate the set of incompatibility prob-
lems that stems from-the differences in protocols, data format, transmission
flows, address formats, and so forth. The platform must also be capable of
parallel processing. The latter is required for efficient sharing of instru-
ments and remote measurements that are a frequently and strongly recom-
mended feature for, and efficient usage of, sharable resources such as virtu-
al instruments and measurement equipment. Besides, the following func-
tions are added: control of coherence and integrity of transmitted data, flow
and error controls usually performed over any communication network.

Generic model. It is the common origin of all specific laboratories and a
necessary element to the definition of properties and attributes common to
different types of laboratory. Each specific laboratory inherits a set of shar-
able tools and has specific tools. According to the proposed inductive meth-
od, the list of attributes is increasingly extended with the addition of specif-
ic laboratories. Identified attributes are classified into two groups: external
attributes and internal attributes.

External attributes define features required for the working of laborato-
ries and commonly used. Following is a sample of such attributes :

e support tools used for the preparation of experiment and during the
experiments;
measurement instruments such as rule, voltmeter, Foscilloscope, and so on;
remote experiment manager interfacing between client requests and an-
SWer servers;

170 Pierre and Kassouf

e database link manager facilitating database access and consultation;

e communications tools allowing for efficient information exchanges such
as electronic messaging, video-conference and audio-conference tools;

e reference tools used during experiments.

The second group of attributes includes attributes that are associated
with the architecture and allow for presenting experiments. It is at the level
of internal attributes that notions of experience, interface, and counselor
system spaces appear. In this perspective, a key attribute emerges; it is
called experience manager. That is the supervisor of the following five
spaces presented to the experimenter:

o the presentation space which displays experiments in video and, other
images;

o the manipulation space which allows for taking measures and
manipulations;

o the analysis space which allows for analyzing results; and finally

o the theoretical and application space which displays a theory and its ap-
plications.

There is also the help manager which could be divided into two sub-
systems:

o the contextual help sub-system which supplies the user with help in a
given situation such as the measure that should be taken with a given in-
strument; and

o the presentation sub-system which suggests the working method in a vir-
tual laboratory.

Thus, a generic model allows for integrating in a coherent manner, an
important number of BTF shared among several entities, possibly heteroge-
neous, through an evolutionary and adaptive platform.

Modeling the Platform

A telecommunication platform could be seen as a regrouping of mod-
ules. Each of these modules is dedicated to a specific task. As shown in Figure
6, these modules carry out the following three tasks: (a) adaptation to STF, (b)
integration of BTF, and (c) adaptation to users’ communication networks.

Towards a Telecommunication Platform 171

Specific virtual laboratories

Specific tools and functionalities adaptation layer

Generic tools and functionalities layer

User networks adaptation layer

Different User Networks

Figure 6. Triple-layered model for the telecommunication platform
This modular approach has the following advantages:

e [Independence: the platform makes its resources available to virtual li-
brary applications without depending on a particular application;

e Portability: common tools could be added, withdrawn, or modified
without altering the general output of specific laboratories;

e Universality: remote users are not constrained to a particular platform
and not limited to proprietary computer systems; and

e Modularity: each of the platform’s modules could be designed, imple-
mented, and improved without the least change to the other modules.

Such an approach allows for an evolutionary development not only of
the progressive design of BTF but also the adaptation of tools and function-
alities that are specific to each type of laboratory. These features constitute
the most original aspect of this platform.

To realize interoperability functions, the adaptation layer must meet the
following requirements:

e Operation in parallel mode: is an ideal method to support a simulta-
neous access by several users. When the adaptation layer receives a

172 Pierre and Kassouf

request, it launches threads capable of processing without interfering
with other current processes.

o Choice for an adequate communications: For example, a client having
an ATM access cannot be reached through a TCP/IP protocol. For each
user, the network adaptation layer must invoke the interface and middle-
ware encapsulating the communication protocol comprised and support-
ed by its network.

o User identification: Virtual laboratory sites have public and private sec-
tions. The first section presents pedagogical information on the general
objectives of virtual laboratories. The second section provides students
with access to virtual manipulations. The distinction between the two
categories of user requires the identification of each user, as well as his/
her address and access code. This type of information is then stored on
the platform, consulted and updated, independently of the communica-
tion means used by a client.

e Quality of Service: the adaptation layer realizes, among other things, the
adaptation to the transmission speed of the physical support which links
the network of each user to the platform. For an access by means of tele-
phone lines or ADSL, the conventional transmission speed is of a few
hundreds Kbps. But, for an ATM network, whatever the class of the ne-
gotiated traffic by the client during the setting of the link CBR or ABR,
the transmission could reach a million of bits per second (Mbps). At the
level of the adaptation layer, the enviesioned method for this type of sit-
uation consists of compression and decompression mechanisms applied
to data before and after they pass through the user network’s adequate
stack of standard communication protocols. The algorithms as well as
the rates of compression vary according to the nature of each network.

When a client asks for a particular manipulation and selects the ade-
quate parameters, the adaptation layer assigns to this request, a session
where all previous exchanges regarding the client’s experimentation could
take place in a simple and transparent way. The user will be concentrated
on his/her experiment without noticing the events that occur on the platform
or on his/her own machine. Besides interoperability, the adaptation layer
takes into account functions in any network environment such as the man-
agement of clients’ requests, security, administration of virtual laboratories’
resources, and so forth.

The BTF layer provides a list of basic tools commonly integrated into
different specific virtual laboratories. What is shared among specific labora-
tories could be assimilated to structural groupings, each having features that

Towards a Telecommunication Platform 173

distinguish it from the others. Each structure is considered, from an object-
oriented standpoint, as a class whose instances have their own attributes and
exclusive manipulation methods. An example is the measurement function
translated into a group of classes, each corresponding to a measurement in-
strument such as a barometer, a protractor, or a voltmeter. Thus, the tools
are nothing but objects derived from these classes. However, each tool also
has specific attributes and private methods that are internal procedures,
thereby invisible to users. Sometimes, basic tools require means to contact
other objects scattered in the same experimental framework. This type of
interaction could be realized by means of public methods.

Adaptation to STF is a necessary condition for an efficient experimen-
tation focusing on users. While maintaining a class and object perception to
identify function and tools, the adaptation layer does not present new class-
es and structures. Rather, it allows for the cooperation between STF and
BTF in a given specific laboratory. An example of this is the tuning of the
weighting scale that is necessary for a physics laboratory where masses
vary from a few to hundreds of kilograms. As for a chemistry laboratory,
manipulated matters often vary from milligrams to dozens of grams. More-
over, an example for electrical engineering is the time scale of a chronome-
ter which is tuned at microseconds or milliseconds for controlling signals.
This chronometer is regularly and automatically triggered and it starts
anew; any time it registers the duration of an action by an enzyme or by a
catalyst in a biological metabolism.

The adaptation to STF essentially consists of manipulating the public
parameters of common objects. An adjustment of certain variables, a return
to zero of others, a new grading of measurement instruments and a new ac-
tivation of more advanced graphic options are a few samples of requested
tasks at the level of the telecommunication platform’s first layer.

IMPLEMENTING THE TELECOMMUNICATION PLATFORM

A specific laboratory could be considered as a collection of distributed
objects. Interactions among these objects and between these objects and ex-
ternal basic tools follow well-defined rules and protocols according to the
considered scientific discipline. At the moment, the platform only supports
two laboratory prototypes, one for physics and the other for electrical engi-
neering.

174 Pierre and Kassouf

Prototypes Implementation Details

The physics laboratory is a reproduction of a real laboratory provided
with many measurement instruments and experimental materials. It was de-
veloped with a Micromedia product, known as Director. The used program-
ming language Lingos; is an object-oriented language which allows for pow-
erful interactions based on combinations of graphics, text, sound and video.

In the case of an execution in local mode, the virtual laboratory is a file
executable with the extension (.exe); its distribution on a communication
network is realized in two ways. The first way is considered to be primitive
and consists of downloading the executable code that is launched on a client
site, eventually after having carried out a few security configurations. The
second way is more sophisticated and calls upon another Macromedia prod-
uct, called Schockwave. That is an intermediary module authorizing, a web
browser for triggering an execution of a program generated with Director in
the form of web pages. More specifically, it is an Internet engine dedicated
to the distribution of multimedia applications on a weak bandwidth. Obvi-
ously, Schockwave’s success is due to the fact that Direcfor is supported by
a set of Internet standards, an integrated set of support protocols such as
HTTP and FTP, as well as other functions including the XML document in-
terpretation and the HTML file integration. In this context, bidirectional
data exchanges are also possible, using the support interface CGI. An im-
portant function consists of automatically converting the Lingo code into a
Java Applet, easily understandable by any JVM. This is an Internet distribu-
tion mechanism equivalent to Shockwave.

However, the two suggested methods have some drawbacks. While the
downloading of the code to be run could be very slow, for the local filing
system to be explicitly accessible, the user must establish special permis-
sions. As a result, the portability and flexibility of a remote execution are
reduced, especially when the platforms supplied with UNIX and LINUX
operating systems are excluded. This drawback is also the case with Shock-
wave, designed especially for Windows 95/98/NT and Apple OS 8 operat-
ing systems. The conversion in Java allows for partially overcoming this
problem, because an interpreter of a Sun station captures the resulting Java
code. However, this alternative is also considerably slow and incompatible
with a few of Lingo instructions. Another means was considered for estab-
lishing a link between a physics laboratory’s BTF written in Java. This is
feasible through the use of the intermediary JavaScript code for reshaping
exchanged data flows with Schockwave. However, realizing this choice ap-
peared to be complex and not dependable.

Towards a Telecommunication Platform 175

The electrical engineering laboratory displays conventional aspects of
electrical engineering, particularly regarding the processing of electrical
signals. The shaping of virtual electrical engineering prototypes could easi-
ly be undertaken by using Labview system. This system is built by National
Instrument. It is a parallel, graphic, and multitask programming system. The
objective is to regroup in virtual instruments; varied electronic components
such as gauges, thermometers, lamps, interrupters, and so forth. The inter-
face built with the graphic language G is compiled to provide an executable
code to a comparable speed with that of a compiled code C. Virtual or real
electrical instruments involved in an application are managed by means of
manipulated standards controllers through Labview libraries and standard
interfaces such as VISA and GPIB.

Connectivity to remote instruments could be seen from different an-
gles. For an electrical engineering laboratory, three alternatives are predom-
inant. The first alternative directly corresponds to data capture and physical
access to distributed electronic equipment. The result is an executable file
that allows for capturing and analyzing received or transmitted signals
through a GPIB interface according to the IEEE 488 standard. GPIB sup-
ports diverse communication mechanisms among which the TCP/IP and
ATM architectures. This approach does not impose a limit on the number of
simultaneously connected users.

The second alternative consists of a client/server model dedicated to
data capture in input/output at the level of instruments on a local or extend-
ed network. This necessitates packages of NI-DAQ software from the cli-
ent’s side as well as from the server’s side. The process of remote access
used is called RDA and uses the TCP/IP family of protocols. In other re-
spects, a scenario for distance data capture is completely transparent with
RDA and could be implemented after an adequate configuration of the cli-
ent entities in order for them to recognize the invoked server. Thus, a client
will be capable of receiving a signal issued from one or several servers at
the same time. However, an important obstacle remains on the server side
because its capacity to serve several competing clients is reduced and runs
the risk of reaching only one client at a time.

Finally, Labview has a development tool for Internet, known as Internet
Development Toolkit for G. This tool allows for building HTTP servers ca-
pable of converting virtual instruments into recoverable images in HTML
documents. These images could be seen through web browsers. Special
mechanisms could be used to insure the security of these HTML pages.
Moreover, this programming tool offers the possibility of generating virtual
instruments encapsulating the CGI code for more dynamic exchanges of

176 Pierre and Kassouf

requests between clients and servers. Virtual instruments are also supplied
with more classic instruments such as electronic mail and file transfer to an
FTP server.

Access to virtual laboratories is in fact an access to a website hosted in
an HTTP server. The welcome pages offer the user an overview of the labo-
ratories’ pedagogical objectives. The surfing is undertaken by means of
HTML links. Some of these links also serve as starting keys for experimen-
tation. These pages launch laboratory on a client’s platform as well as on
an autonomous VDU for basic tools.

In order to launch a laboratory, the codes are activated according to the
designated prototype. For the physics laboratory, the Shockwave tool has
been used to export the Lingo code in a HTML format. In return, the electri-
cal engineering laboratory uses the remote RDA access procedure.

The VDU that presents the basic tools is a Java Applet which integrates
among other things, a chronometer, a notebook, and a calculator. The adap-
tation of these tools to the specific context of a laboratory is done during the
downloading of the Applet. In other words, every specific laboratory has its
own call interface comprising this type of Java Applet. Figure 7 illustrates
the implementation of the BTF layer for the design model, as well as the ad-
aptation layer to STF.

~
~

Java Applet for
generic tools

Generic tools set .

Figure 7. Implementation of the first two layers of the conceptual model

Towards a Telecommunication Platform 177

The layer for the adaptation to users’ networks is implemented with a
Java Applet that calls upon the HTTP interface and the TCP/IP family of
protocols. Besides the HTTP interface, a generic tool that specifies the ex-
change of requests according to the CORBA architecture is not impeded by
the heterogeneity of communication networks. The underlying architecture
often lays on the IIOP protocol. It allows the ORB to efficiently carry out
remote operations and communicate the results to clients. Interoperability is
guaranteed in a transparent way to the user, as shown in Figure 8.

User networks adaptation layer

. | ORB/IIOP interface || HTTP interface }

TCP/IP protocol suite |

ADSL
access

links

Figure 8. Implementation of the user networks adaptation layer

The Java Applet consists of a process which creates a child process
specific to each invoked tool. As long as the tool in question is active, the
loading process remains active in the back. The logical structure of the Java
Applet is represented in Figure 9. The chronometer (a set of Java classes)
records temporal delays through an internal clock of the client site, without
an intervention from the server. The scenario is identical for the calculator
that calls upon more advanced graphic functions of Java. The notebook is a
representation of a database devoted to virtual laboratories. It is a table on
which clients access to experimentation sessions. A typical access to the
notebook is illustrated in Figure 10.

178

Pierre and Kassouf

1

Calculator
invoked

+

Child process for the calculator

Java Applet for the generic

tools set

Chronometer
invoked

Child process for the chronometer

Generic tool N
invoked

Child process for the tool N

Generic tool end of activities

1

| Deletion of the corresponding child process |

Figure 9. Processing scheme

Towards a Telecommunication Platform 179

Web Browser
Request’s ourcome
[[[[]
[| | | |
[[[[]
. Database server
Client 1
communication
network
Web Browser
Database
Request’s ourcome
[[[[]
[| | | |
[[[[]
Client N

Figure 10. Notebook access scheme

Environment and Implementation Tools

The basic tool VDU of the platform is itself a Java Applet inserted in a
HTML page, downloaded from a public HTTP server. It is capable of func-
tioning with any operating system if, and only if, the operating system sup-
ports a web browser. However, at the level of the client system, the actual
structures of laboratory prototypes allow for the following specifications:

e Windows 95/98/ NT 4.0 or more as well as MacOS (Power PC) as oper-
ating system;

Pentium II (or better) as processor;

A core memory of 32 MB minimum (64 MB or more is recommended);
A disk space of 125 MB minimum; and

Netscape Navigator 3.0, Internet Explorer 3.0, or their latest versions are
recommended browsers.

180 Pierre and Kassouf

The client must have on the machine the complete version of the exe-
cution environment JRE 1.2 (Java 2 platform). In effect, JDK 1.2 is a devel-
opment tool which, for the moment, is not part of current versions of
browsers. These browsers are provided with versions prior to JDK 1.1. In
relation to JDK 1.1, significant improvement are brought to JDK 1.2: a bet-
ter graphic interface, more secure access to a better control policy, more ad-
vanced RMI mechanisms, a CORBA support for interoperability, and con-
nectivity to remote services.

To get the JDK 1.2 written Applets started within different existing
web browsers, a Java plug-in is advised. It allows the web browser execu-
tion environment for abstaining, while

it provides the Java code with a Java virtual machine (JVM) capable of
interpreting instructions previously generated by a Java JDK 1.2 compiler.
When the JRE 1.2 is installed on the client site, in order to activate the JRE
environment, it is sufficient to invoke the Java extension module during the
downloading of the Applet by way of the HTTP standard interface.

As for the CORBA support, a Java ORB compatible with CORBA/
IIOP 2.0 specifications is supplied in the form of JRE libraries. Through the
Applet, certain generic tools could initialize an ORB and later connect to
every distributed object, identifiable by a unique object reference (IOR).

To establish a CORBA connection and manipulate the remote object, a
configuration of the security policy is necessary for the locally downloaded
Applet. This step is carried out once only, using the JRE 1.2 policytool.
However, the specification required from the client is not complete and ev-
ery time is subject to addition of new extensions according to products used
for virtual laboratory prototypes. In this category, one can find Shockwave
for the physics laboratory or other Labview special extensions for capturing
and controlling data manipulated by distributed virtual instruments.

As for the server, the problem is a bit delicate because of the multiplici-
ty of generic and specific entities serving clients. In effect, the inductive ap-
proach adopted for the design of the generic virtual laboratory model is
such that the addition of a new laboratory introduces at least one additional
computer tool. As shown in Figure 11, several servers could be involved in
this context. Such is the case, for example, of the electrical engineering lab-
oratory where the client controls an engine from a distance in a direct link
with a Labview server and a determined protocol.

Towards a Telecommunication Platform 181

Specific laboratory
server

Notebook server

Generic tools set

X
Database
HTTP server 2)
(Virtual laboratories
‘Web site)

]
Client browser :
Virtual simulations :
window i 3)
]
]
1
1
1

Processing steps:

1- HTML document loading

2- Virtual simulation execution using plug-ins

3- Notebook access through underlying CORBA middleware

Figure 11. Typical virtual laboratory manipulation

Some generic tools that are part of the distributed CORBA object envi-
ronment also require dedicated servers. In this case, the objects themselves
act as servers to which any client access is carried out by respecting COR-
BA’s architecture operating model. In this realization, the notebook sup-
plied by the telecommunication platform refers to this type of server.

HTTP servers form the third category of servers. They are also called
web servers. An HTTP server distributes HTML documents corresponding
to virtual laboratories. The setting of the web site dedicated to this project
includes an opening page, information on the technical and pedagogical as-
pects of specific laboratories, adequate means for launching virtual simula-
tions, HTML links referring to other sites, as well as servers that could coexist

182 Pierre and Kassouf

on the same or different machines. Their positioning is a function of hard-
ware and software features. For any HTTP server, the required tools are
HTTP tools that could exist on platforms and environments of different na-
tures, such as UNIX and Windows NT workstations.

EXPERIMENTATION RESULTS

The performance measurement of the telecommunication platform
could be based on criteria such as: dependability of links, client machine’s
operating features, and servers’ capacity. The flexibility of a web browser
allows for hiding the complexity related to the adaptation and integration of
the entire set of tools used.

Browsing Mechanisms and Interface

The homepage of the virtual laboratories’ site is shown in Figure 12.
This site includes public and private sections distributed on different labora-
tories. The adaptation layer dedicated to users discriminates between autho-
rized and nonauthorized users. It is connected to a central controller linked
to a database. When access is authorized, the user can start manipulating. A
new page appears on the user’s VDU, showing a list of available manipula-
tions and generic tools.

The VDU of generic tools is present during every manipulation. It sup-
plies access to basic tools by means of buttons. It is necessary to push on
one of these buttons to activate the corresponding tool. Options currently
implemented include the chronometer, the calculator, and the notebook.

The chronometer. Once this button is selected, the temporization is
triggered. An “Active Chronometer” then replaces the button labeled “chro-
nometer.” It is sufficient to push on this button to stop the operation and re-
turn to the initial state. The registered temporization is displayed on the
contextual field.

The calculator. Pushing this button activates a scientific calculator.
Once the corresponding window is opened, the user will have the choice to
carry out some elementary algebraic or trigonometric operations. Other op-
tions such as memorization of results, change of angular units, and the trace
of polynomial functions of degree equal to or lower than 5 are also possible.
The current version of the calculator is shown in Figure 13.

Towards a Telecommunication Platform 183

i e e
2 EJ a2 =
B T e R e] e —
1T ®
e — s
[i e | ’
P
[e e 1
[“ e b ierpi e G
L=
L
P
[re— -
[
[i] =
- T T el ! TR G

Figure 12. Virtual laboratories’ homepage

M b [y [_[O]
e€nu bar E— Dessin

Drawing space —

Display field

—» 0
[i = dgr rad C CcA
(] RAN In MOD
tan sin cos xhy exp
Set of possible e 1% e ren 7
operations > 10 7 s °
RCL 4 5 6
pi 1 2 3 +
<o 0 Sl =

Figure 13. Generic calculator

184 Pierre and Kassouf

The notebook. The flexibility of processing information stored in databas-
es offers an ideal choice for memorizing the output measures taken within
diverse categories of simulation. Each manipulation is identified by a
unique code. As well, each student attending a class is also identified by a
unique code. These two codes allow for finding a student’s experiment re-
sults during a particular laboratory session. At the beginning of every ac-
cess to a notebook, the student code and the manipulation code are cap-
tured. As early as the student and the manipulation carried out are known,
corresponding results are displayed on the screen, as shown in Figure 14.

| shend stndi e Wil - Helanene

Cahier de Laboratoire

MANTPULATTIONS
| AeiD | Colenmi | Colonmz | Coknmd woks | |
[1 25 389 o] 253 453 el
2 13 BESH 21E5ES 15545
{3 J3BSEE | 2954055 |1 754652
_-'- 20 RS rh R S5 S
5 13685 1] 13555
(5 2365 FER I EL | veuaisar |
I 44 385 ret]] 41 E3S
8 13685 SE.ESE 1555 Ajpakar |
E ELET] 21640 235853
i0 13585 P 15553
11 136562 GASAES 16645 Heaer |
14 40 BEd o5 B S 4 5 Sl Srs dEuEme
[13 13685 255564 13745 [Sepprirar

Ik

Raggari : |'.fr:|.ulmllnn o G

Figure 14. Notebook contents

Experimentation of the Telecommunication Platform

In order to evaluate the platform’s performance, we have proposed a
few experimental scenarios based on a certain communication infrastruc-
ture. Workstations are distributed throughout three geographical sites, distant

Towards a Telecommunication Platform 185

from one to another and connected to each other by communication links of
different types. Sites 2 and 3 are linked in a local mode forming with Site 1
an extended (metropolitan area) network. Figure 15 shows the site’s struc-
ture and the nature of communication supports that link these sites.

Direct ADSL link

Workstation at
Site 1

HTTP server at
Site 3

Workstation at
Site 2

Figure 15. Experimental infrastructure

The performance of this telecommunication platform has been evaluat-
ed by comparing graphics illustrating delay variation and number of ex-
changed TCP/IP packets during the HTTP downloading of the entire gener-
ic and specific tools of the physics laboratory, as well as during the manipu-
lation of a notebook by way of CORBA. Table 1 presents the adopted nota-
tions for the test sessions.

Table 1
Test Session Notation
Day Period Site 1 (Client) Site 3 (Server)
Morning P1 L1
Afternoon P2 L2
Evening P3 L3

Figures 16 and 17 present respectively, the delays and the number of
corresponding packets, by using the Internet to access the physics laborato-
ry which integrates basic tools, textual information, and video sequences of
manipulations.

186 Pierre and Kassouf

Delays
(ms)
70

Video traffic

VA

Textual
e .

exchange

[

HTML traffic

P

Test timetable
P1 P2 P3 L1 L2 L3

Figure 16. Physics laboratory loading delays

Packets
6000

5000

4000

Textual
information
exchange

/

/

3000

Video traffic

2000

1000

Test timetable

P1 P2 P3 L1 L2 L3

Figure 17. Physics laboratory overload

Towards a Telecommunication Platform 187

The physics laboratory. Whatever the period and experimental site, the
physics laboratory requires approximately the same number of TCP/IP
packets whose size varies between 60 and 300 bytes. As shown in Figure
17, the latter fluctuates around 450 packets for HTML pages, 1400 packets
for a first video sequence, and 1400 other packets for the manipulation of a
table with an air squab having mainly contextual information.

In return, the transmission delay between a client and the web server
installed on the Site 3 depends on two key factors: local or extended client
network, and the load of this network. For the first factor, the series of mea-
sures L1, L2, and L3 of Figure 16 present delays practically identical to a
given type of media. The access period to the physics laboratory does not
matter. In this case, the client and the HTTP server are both weakly loaded
in a local network. The network bottleneck appears in the series of mea-
sures P1, P2, P3 where the client is the Site 1. For the four types of media,
the delays are higher than previous values by a ratio of 2 or even 3. The
longest delays are observed, particularly in the afternoon when the links are
most loaded.

Regarding CORBA exchanges, we have erected similar graphics to
previous ones. These graphics are distributed by the notebook’s operation
type. The chronometer and calculator are implicitly loaded with the physics
laboratory. The use of these is perfectly static and does not call for dynamic
exchanges. However, the manipulation of the notebook requires dynamic
communications with the database server, which is, placed apart on a ma-
chine. Figures 18 to 22 respectively show the cost on Internet of some oper-
ations such as the opening of a notebook, the addition of ant record to a da-
tabase, the modification and suppression of an existing record, as well as
the closure of a notebook.

The notebook. TCP/IP packets encapsulating information bytes as well
as control bytes relative to the IIOP/CORBA protocol circulate during dy-
namic exchanges between a client and a database server. Each command to
the database introduces different delays and number of packets. For the se-
ries of measure L1, L2, and L3, the number of packets and the delays are
slightly higher than those of the series P1, P2, and P3 realized in a local net-
work. However, the limited number of bytes of each request minimizes the
influence of the network’s load in both cases. In an extended network, loss-
es of packets and retransmissions could occur, which explains the growth in
the number of packets and delays. Test results are represented respectively
in a local mode in Table 2 and in an extended mode in Table 3.

188 Pierre and Kassouf

Packets Delays
(ms)
1000
205
9200
2
800
195 0
600
19
]Eﬂﬂ
185
400
18 300
200
175
100
17 ,
Test
P1 P2 P3 L1 L2 L3 timetable PrP2 P3 Lt L2 L3

Figure 18. Connection establishment and overload delay

Packets Delay (ms)
62 80
6 m
58 60
% 50
54
i}
52
5 KUl
18 0
4 m
4 Test ¢
nonon I 12 13 timemble ppopp o p3 LB

Figure 19. Record insertion overload and delay

Towards a Telecommunication Platform 189
Packets Delay (ms)
800
1
100
§
600
5,
500
4,
400
3 0
24 20
19 100
0 Test '
PP D LI L2 13 timetable P1 P2 P3 L1 13
Figure 20. Record updating overload and delay
Packets Delay(ms)
58 600
56 500
54 40
52 300
5 200
18 100
46 Test 0
NN N L 121 timemble popp3 o1

Figure 21. Record deletion overload and delay

190 Pierre and Kassouf

Packets
Delay(ms)
&Y 300

315 — 250

31 200

305 Jiso
3 100
29
L

0
SGinces
P1 P2 P3 L1 L2 de test

P2 P3 L1 L2 L3

Figure 22. Disconnection overload and delay

Table 2

Manipulation Results of the Notebook in Internet Mode
Average Value Number of Packets Delay (ms)
Opening of the notebook 18 360
Addition of a recording 5 220
Update of recording 5 230
Deletion of a Recording 5 220
Closure of the notebook 3 160

Table 3
Notebook’s Manipulation Results in an Extended Mode with Internet
Average Value Number of Packets Delay (ms)
Opening of the laboratory Book 19 560
Addition of a recording 5.5 430
Updating of a recording 5.6 430
Deletion of a recording 5.4 420
Closure of the notebook 3.04 220

The telecommunication platform on the ADSL’s direct link joining the
client’s station of Site 1 to the HTTP server of Site 3 which is installed, in
this case, on the same machine as the database server was also tested. Table
4 presents a sample of statistics realized on exchanged requests. In this par-
ticular case, the period of test does not matter, because we use a closed cir-
cuit on which no other user can be hooked. Figure 23 results are summa-
rized on Tables 4 and 5.

Towards a Telecommunication Platform 191

Figure 23. Exchanged requests between a client and a server on
ADSL link

Table 4
Downloading Results for the Physics Lab with ADSL

55 |Dest Addiess [Layer [Summay |Len |Rel Time |Delta Time [#bs. Time

2,11 192 168.2.10 |TCP 1189->1072, 163 0:01:32.977 0.068.648 10-06-1999 06:
2.10 182 18 2. 11 TCP 1072-51187, 68 0:01:33 163 0.185. 287 10/06-1999 0k
210 192 168 2 .11 |TCP 1072-»1187. 1071 0:01:39 006 5.843 847 10-06-1999 06
2,11 192 .168.2.10 |TCP 1187->1072, 62 0:01:39.109 0.102.223 10-06-1999 06:
211 192 168 2 .10 |TCP 1187-»1072, 176 0:01:47 761 8 R4l 926 10-06-1999 06
2,10 192 168.2.11 |TCP 1072->1187, 68 0:01:47.911 0.160.914 10-06-1999 06:
2.10 182 18 2. 11 TCP 1072-31187, 86 0:01:47 962 0 050 518 10/06-1999 0k
211 192 168 2 .10 |TCP 1187-»1072, 62 0:01:48.109 0.146 688 10-06-1999 06
2,11 192 168.2.10 |TCP 1187-»1072, 163 0:01:48 119 0.010.231 10-06-1999 06:
210 192 168 2 11 |TCP 1072-»1187, 68 0:01:48 313 0.194 139 10-06-1999 06
2,10 192 168 .2 .11 |TCP 1072-»1187. 1103 0:01:54 395 6082 396 10-06-1999 06:
2,11 192 .168.2.10 |TCP 1187->1072, 62 0:01:54.509 0.113.16% 10-06-1999 06:
211 192 168 2 .10 |TCP 1187-»1072, 176 0:02:02 059 7 550 580 10-06-1999 06
2,10 192 168.2.11 |TCP 1072-»1187, 68 0:02:02. 260 0.200. 457 10-06-1999 06:
2.10 182 18 2. 11 TCP 1072-31187, 86 0:02:02 266 0.005.913 10/06-1999 0k
211 192 168 2 .10 |TCP 1187-»1072. 62 0:02:02 410 0.144 002 10-06-1999 06
2,11 192 168.2.10 |TCP 1187->1072, 163 0:02:02 418 0.007.912 10-06-1999 06:
2. 10 192 168 2 11 TCP 107231187 68 0:.02:02 B&0 0142 785 10-06-1999 (16

1] 1

2.11 182 18 2. 10 TCP 1187-51072, 62 0:02:08 210 0.147 140 10/06-1999 0k
211 192 168 2 .10 |TCP 1187-»1072, 177 0:02:22 910 14 700.270 10-06-1999 06
.2.10 192 168.2.11 |TCP 1072-»1187, 68 0:02:23.029 0.118.696 10-06-1999 06:
2100 192 168 2 11 |TCP 1072-»1187, 86 0:02:23 162 0.133 067 10-06-1999 06
.2.11 192 168.2.10 |TCP 1187->1072, 62 0:02:23.310 0,147,965 10-06-1999 06:
.2.11 192 .168.2.10 |TCP 1187->1072, 163 0:02:23 314 0.004.590 10-06-1999 06:
210 192 168 2 .11 |TCP 1072-»1187, 68 0:02:23 430 0.115 516 10-06-1999 06
.2.10 192 .168.2.11 |TCP 1072-»>1187, 1171 0:02:29 546 6.116.463 10-06-1999 06:
211 192 1s& 2 10 |TCP 1187-31072, 62 0:02:29 711 0.164 391 10-06-1999 06
211 192 168 2 .10 |TCP 1187->1072. 184 0:02:40 340 10 629.832 10-06-1999 06
.2.10 1382 168.2.11 |TCP 1072->1187, 638 0:02:40.487 0.146.568 10-06-1999 06:
210 192 168 2 .11 |TCP 1072-»1187, 86 0:02:40 875 0.388.092 10-06-1999 06
.2.11 192 168.2.10 |TCP 1187->1072, 163 0:02:40 982 0.106.960 10-06-1999 06:
2.10 182 18 2. 11 TCP 1072-51187, 68 0:02:41 189 0.207. 207 10/06-1999 0k
210 192 168 2 .11 |TCP 1072-»1187. 1171 0:02:47 AB6 6496 409 10-06-1999 06
.2.11 192 .168.2.10 |TCP 1187-»1072, 62 0:02:47.810 0.124.029 10-06-1999 06:
211 192 168 2 .10 |TCP 1187-»1072, 176 0:02:56 073 8 263 699 10-06-1999 06
.2.10 192 168.2.11 |TCP 1072->1187, 68 0:02:56.240 0.166.348 10-06-1999 06:
.2.10 1382 1e8.2.11 |TCP 1072-»1187, 86 0:02:56.398 0.158.699 10-06-1999 06:
211 192 168 2 .10 |TCP 1187-»1072, 163 0:02:56 404 0.005. 909 10-06-1999 06
.2.10 192 168.2.11 |TCP 1072-»1187, 68 0:02:56.540 0.136.024 10-06-1999 06:
2.10 192 168 2 .11 |TCP 1072-»1187, 1202 0:03:04 108 7 B&7 GEL 10-06-1999 06
211 192 168 2 .10 |TCP 1187-»1072. 62 0:03:04 210 0.101 724 10-06-1999 06
.2.11 192 .168.2.10 |TCP 1187->1072, 176 0:03:11 698 7.488.033 10-06-1999 06:
210 192 168 2 .11 |TCP 1072-»1187, 68 0:03:11 892 0.194 040 10-06-1999 06
.2.10 192 1e8.2.11 |TCP 1072->1187, 86 0:02:12.185 0.293.741 10-06-1999 06:

an

HTML pages Video 1 Video 2 Textual
Information
Number of Packets 445 1408 5459 1545
Number of Bytes 424728 1411097 5595294 1561197
Delay (s) 10.068 21.937 65.533 39.992

Table 5
Manipulation Results for the Notebook with ADSL

Average Value Number of Packets Delay (s)
Opening of the notebook 37 29.119
Addition of a recording 8.5 10.761
Update of a recording 8.5 11.278
Deletion of recording 8 8.751
Closure of the notebook 3 0.164

192 Pierre and Kassouf

The performance of the ADSL link is in fact far from our expectations.
It is comparable with that of a heavily loaded Internet network. Although
our link works with a speed that is between 600 and 880 kilobits per second
(Kbps), the main cause for the increase in delay in relation to the Internet
case is due to the transmission of a packet whose size is often over one
1000 bytes from the server. This packet accompanies each request, except
the interruption request. This type of packet could be seen on the shaded
line of Table 4. It corresponds to the growth in the number of packets ex-
changed during the manipulation of the notebook. As for the different flows
of media, the numbers of transmitted packets vary reasonably in relation to
the previous case. However, the number of exchanged bytes is bigger and
sometimes could triple the previous case. This confirms the presence of
packets on the ADSL link. This packet is very large and sometimes could
be of 1000 bytes, as shown in Figure 23.

CONCLUSION

In this article, a telecommunication platform for supporting distributed
virtual laboratories has been presented. Three layers compose the architec-
ture of this platform. The first layer takes into account the notions of access
to the laboratories and interoperability among heterogeneous networks al-
lowing users for accessing virtual laboratory environments. The second lay-
er supplies a set of tools and generic functions sharable among several spe-
cific laboratories. The third layer insures the adaptation of these basic tools
to other specific tools that exist in the peculiar context of each laboratory.

The authors’ concern was to design an open platform, in the sense that
different categories of technologies can coexist and evolve. The result is a
distributed system in which diverse elements inter-operate while invoking
varied computerized environments and tools. Thus, the access to the web-
site for virtual laboratories includes not only pedagogical contents but also
access mechanisms to simulations and virtual experimentation from differ-
ent specific laboratories. During the whole laboratory session, the student
could use activated generic tools from a VDU giving access to the laborato-
ry. The actual configuration involves several servers distributed throughout
distinct geographical sites: a HTTP server, a server for managing note-
books, and several other servers to manage specific laboratories. Some pre-
liminary configurations are required on the client site to enable the use of
all implemented computer modules. Different access links allow for con-
necting a client to all servers on the platform.

Towards a Telecommunication Platform 193

To validate the implementation, a series of interactive tests at different
hours during a day, involving different access links was carried out. Experi-
mentation scenarios have been elaborated in order to evaluate the perfor-
mance of communications during the use of generic tools and specific labo-
ratories. For this, the static transfer aspect of HTML documents of Java
classes, as well as the dynamic exchange that normally takes place during
the use of a notebook was considered.

The analysis of results reveals the existence of an enormous traffic that
is generated during the downloading of HTML pages, particularly video se-
quences. Then, dynamic exchanges allow only a determined number of
TCP/IP packets. The transmission speed differs from one type of link to an-
other. With the Internet, this is translated into variable delays which remain
smaller than those observed on the specialized ADSL link. The network
congestion and the quality of service required by the user are factors deter-
mining the global efficiency of this platform.

Despite the inevitable gap between the proposed platform architecture
and its realization, this work is a proof for the feasibility of a telecommuni-
cation platform giving access to diverse network and support to distributed
learning environments. Future research could be oriented towards the elabo-
ration of a methodology for the design of distributed virtual laboratories.

References

Anuff, E. (1996). The Java sourcebook. Wiley Computer Publishing, 5-28.

Ausserhofer, A. (1999). Web-based teaching and learning: A panacea?,
IEEE Communications Magazine, 37(3), 92-96.

Bardout, Y., Hauw, L-H., Pavon, J., & Tomas, J. (1998). CORBA for net-
work and service management in the TINA framework, /EEE Commu-
nications Magazine, 36(3), 72-79.

Barton, S., Eykholt, J., Faulkner, R., Kleiman, S., Shivalingiah, A., Smith,
M., Stein, D., Voll, J., Weeks, M., & WILLIAMS, D. (1992). Beyond
multiprocessing...multithreading the SunOS kernel. Proceedings of the
Summer USENIX Conference, San Antonio, Texas, 11-18.

Berners-Lee, T., Fielding, R., & Frystyck, H. (1996). Hypertext transfer
protocol—HTTP/1.0. RFC 1945.

Bostica, B., Callegati, F., Casoni, M., & Raffaelli, C. (1999). Packet optical
networks for high-speed TCP-IP backbones, I[EEE Communications
Magazine, 37(1), 124-129.

Collis, B. (1999). Applications of computer communications in education:
An overview, [EEE Communications Magazine, 37(3), 82-86.

194 Pierre and Kassouf

Collis, B. (1996). Tele-learning in a digital world: The future of distance
learning. International Thomson.

Kassouf, M., Pierre, S., Levert, C., & Conan, J. (1999). Modeling a tele-
communication platform for remote access to virtual laboratories,
1999 IEEE Canadian Conference on Electrical and Computer Engi-
neering, Edmonton, Alberta, Canada, 127-132.

Haggerty, P., & Seetharman, K. (1998). The benefits of CORBA-based net-
work management, Communications of the ACM, 41(10), 73-79.

Harkey, D., & Orfali, R. (1998). Client/server programming with JAVA and
CORBA. (2™

ed.). 3-379. Wiley Computer Publishing.

Henning, M. (1998). Binding, migration, and scalability in CORBA, Com-
munications of the ACM, 41(10), 62-71.

Prnjat, O., & Sacks, L.E. (1999). Integrity methodology for interoperable
environments, [EEE Communications Magazine, 37(5), 126-132.

Schmidt, D.C. (1998). Evaluating architecture for multithreaded object re-
quest brokers, Communications of the ACM, 41(10), 54-60.

Seetharman, K. (1998). The CORBA connection, Communications of The
ACM, 41(10), 34-36.

Siegel, J. (1998). OMG overview: CORBA and the OMA in enterprise
computing, Communications of the ACM, 41(10), 37-43.

Vinoski, S. (1998). New features for CORBA 3.0, Communications of the
ACM, 41(10) 44-52.

